Alibaba lança a nova geração de modelos baseados em Prompt, Qianwen 3.5, conquistando o topo do ranking dos maiores modelos de código aberto do mundo

No dia do Ano Novo Chinês, 16 de fevereiro, a Alibaba lançou open source a nova geração do grande modelo Qwen3.5-Plus, cujo desempenho rivaliza com o Gemini 3 Pro, conquistando o topo do ranking dos modelos open source mais poderosos do mundo.

Sabe-se que o Qwen3.5 realizou uma renovação completa da arquitetura do modelo de base. Nesta versão lançada, o Qwen3.5-Plus possui um total de 397 bilhões de parâmetros, com apenas 17 bilhões ativados, superando em desempenho o modelo Qwen3-Max de mais de um trilhão de parâmetros, com uma redução de 60% no uso de memória de implantação, aumento significativo na eficiência de inferência, podendo alcançar até 19 vezes a taxa de processamento. O preço da API do Qwen3.5-Plus é de apenas 0,8 yuan por milhão de tokens, sendo 1/18 do preço do Gemini 3 Pro.

Ao contrário das gerações anteriores do grande modelo de linguagem Qwen, o Qwen3.5 realizou uma transição de um modelo puramente baseado em texto para um modelo nativo multimodal. O pré-treinamento do Qwen3 foi realizado com tokens de texto puro, enquanto o Qwen3.5 foi pré-treinado com tokens combinados de visão e texto, além de incluir significativamente mais dados em chinês, múltiplas línguas, STEM e raciocínio, permitindo que o grande modelo “que abre os olhos” aprenda conhecimentos mais densos do mundo e lógica de raciocínio. Com menos de 40% dos parâmetros, alcança o desempenho de topo do Qwen3-Max de mais de um trilhão de parâmetros, demonstrando excelente desempenho em avaliações abrangentes de raciocínio, programação e agentes inteligentes. Por exemplo, o Qwen3.5 obteve 87,8 pontos na avaliação de raciocínio de conhecimento MMLU-Pro, superando o GPT-5.2; conquistou 88,4 pontos na avaliação de problemas de nível de doutorado GPQA, acima do Claude 4.5; atingiu 76,5 pontos na avaliação de seguimento de instruções IFBench, batendo recordes de todos os modelos; e no geral, em avaliações de agentes como BFCL-V4 e de busca como Browsecomp, o Qwen3.5 superou o Gemini 3 Pro e o GPT-5.2.

O treinamento multimodal nativo também impulsionou avanços na capacidade visual do Qwen3.5: em diversas avaliações de referência, como raciocínio multimodal (MathVision), perguntas e respostas visuais gerais (RealWorldQA), reconhecimento de texto e compreensão de documentos (CC_OCR), inteligência espacial (RefCOCO-avg), compreensão de vídeos (MLVU), o Qwen3.5 obteve desempenho de ponta. Em tarefas de resolução de problemas acadêmicos, planejamento de tarefas e raciocínio espacial, o Qwen3.5 superou o modelo especializado Qwen3-VL, com melhorias significativas na capacidade de localização espacial e raciocínio com imagens, além de análises de raciocínio mais detalhadas e precisas. Na compreensão de vídeos, suporta entrada direta de vídeos de até duas horas (contexto de 1 milhão de tokens), ideal para análise de conteúdo de vídeos longos e geração de resumos. Além disso, o Qwen3.5 integrou nativamente compreensão visual e habilidades de codificação, combinando ferramentas de busca de imagens e geração de imagens, permitindo transformar esboços feitos à mão em código front-end utilizável, com uma captura de tela capaz de localizar e corrigir problemas de UI, tornando a programação visual uma ferramenta de produtividade real.

O treinamento multimodal nativo do Qwen3.5 foi realizado de forma eficiente na infraestrutura de IA da Alibaba Cloud. Através de uma série de inovações tecnológicas fundamentais, o throughput de treinamento com dados mistos de texto, imagem e vídeo do Qwen3.5 quase iguala o de modelos baseados apenas em texto, reduzindo drasticamente a barreira de entrada para o treinamento multimodal nativo. Além disso, com estratégias de precisão bem planejadas, como FP8 e FP32, ao escalar o treinamento para dezenas de trilhões de tokens, a memória ativa foi reduzida em cerca de 50%, com um aumento de 10% na velocidade de treinamento, economizando custos e aumentando a eficiência do treinamento do modelo.

O Qwen3.5 também alcançou avanços na estrutura de agentes e aplicações de agentes. Pode operar de forma autônoma em smartphones e computadores, realizando tarefas diárias com alta eficiência. No mobile, suporta mais aplicativos e comandos principais; no PC, realiza operações mais complexas, como organização de dados entre aplicativos e execução de processos automatizados, aumentando significativamente a eficiência operacional. Além disso, a equipe da Alibaba criou uma estrutura de aprendizado por reforço assíncrono para agentes, que pode acelerar de 3 a 5 vezes o processo de treinamento, e expandiu o suporte a agentes inteligentes modulares para milhões de unidades.

Sabe-se que o aplicativo Qwen e a versão para PC já estão integrados ao modelo Qwen3.5-Plus. Desenvolvedores podem baixar o novo modelo na comunidade Mofa e HuggingFace, ou acessar o serviço API via Alibaba Cloud Balian. A Alibaba também continuará lançando modelos da série Qwen3.5 de diferentes tamanhos e funcionalidades. Em breve, será lançado o modelo flagship Qwen3.5-Max, com desempenho ainda mais avançado.

Ver original
Esta página pode conter conteúdos de terceiros, que são fornecidos apenas para fins informativos (sem representações/garantias) e não devem ser considerados como uma aprovação dos seus pontos de vista pela Gate, nem como aconselhamento financeiro ou profissional. Consulte a Declaração de exoneração de responsabilidade para obter mais informações.
  • Recompensa
  • Comentar
  • Republicar
  • Partilhar
Comentar
0/400
Nenhum comentário
  • Fixar

Negocie cripto em qualquer lugar e a qualquer hora
qrCode
Digitalizar para transferir a aplicação Gate
Novidades
Português (Portugal)
  • 简体中文
  • English
  • Tiếng Việt
  • 繁體中文
  • Español
  • Русский
  • Français (Afrique)
  • Português (Portugal)
  • Bahasa Indonesia
  • 日本語
  • بالعربية
  • Українська
  • Português (Brasil)